27 research outputs found

    Examining the Relationship between Building Information Modelling (BIM) and Green Star

    Get PDF
    Neither Building Information Modelling (BIM) nor Green Star certification has yet to be widely adopted in the New Zealand construction industry. This paper, therefore, aims to encourage their development by examining the relationship between BIM adoption and Green Star certification. The qualitative approach using 21 semi-structured interviews with the construction professionals was conducted. The results indicate that despite the absence of a direct link, integrating BIM with Green Star has the potential to accelerate the Green Star uptake in New Zealand. However, BIM and Green Star uptake have two separated processes along with the lack of client demand for either BIM or Green Star projects were identified as the significant barriers to the integration. Among eight solutions recommended from the interviewees, providing education and training in both BIM and Green Star for clients and construction practitioners plays a key role.  This research contributes to the current knowledge of BIM and Green Star in New Zealand by providing baseline information to the NZGBC, construction stakeholders, and the government that allows for the formulation of effective strategies to be used to develop both BIM and Green Star

    Population structure analysis and genome-wide association study of a hexaploid oat landrace and cultivar collection

    Get PDF
    IntroductionOat (Avena sativa L.) is an important cereal crop grown worldwide for grain and forage, owing to its high adaptability to diverse environments. However, the genetic and genomics research of oat is lagging behind that of other staple cereal crops. MethodsIn this study, a collection of 288 oat lines originating worldwide was evaluated using 2,213 single nucleotide polymorphism (SNP) markers obtained from an oat iSelect 6K-beadchip array to study its genetic diversity, population structure, and linkage disequilibrium (LD) as well as the genotype–phenotype association for hullessness and lemma color.ResultsThe average gene diversity and polymorphic information content (PIC) were 0.324 and 0.262, respectively. The first three principal components (PCs) accounted for 30.33% of the genetic variation, indicating that the population structure of this panel of oat lines was stronger than that reported in most previous studies. In addition, accessions could be classified into two subpopulations using a Bayesian clustering approach, and the clustering pattern of accessions was closely associated with their region of origin. Additionally, evaluation of LD decay using 2,143 mapped markers revealed that the intrachromosomal whole-genome LD decayed rapidly to a critical r2 value of 0.156 for marker pairs separated by a genetic distance of 1.41 cM. Genome-wide association study (GWAS) detected six significant associations with the hullessness trait. Four of these six markers were located on the Mrg21 linkage group between 194.0 and 205.7 cM, while the other two significant markers mapped to Mrg05 and Mrg09. Three significant SNPs, showing strong association with lemma color, were located on linkage groups Mrg17, Mrg18, and Mrg20.DiscussionOur results discerned relevant patterns of genetic diversity, population structure, and LD among members of a worldwide collection of oat landraces and cultivars proposed to be ‘typical’ of the Qinghai-Tibetan Plateau. These results have important implications for further studies on association mapping and practical breeding in high-altitude oat

    Investigating the Effectiveness of BIM-BMS Integration on Managing Existing Building Facilities: A New Zealand Educational Building Case

    No full text
    Nowadays, the building sector and people’s activities in buildings account for nearly 60% of the world’s electricity consumption. Wherein, the operation accounts for 87% of total costs in the whole building lifecycle. Hence, it is most efficient in enhancing the sustainable performance in this phase. However, the current information management process in building facilities O&M phase is weak. Towards this problem, a solution of proposing BIM-BMS integration was raised from the literature. Besides, the educational building was identified as the most suitable building type in New Zealand to test. In this regard, the research aims to investigate the effectiveness of BIM-BMS integration in managing existing educational building facilities in New Zealand. Due to the solution belonging to a complex system, this study adopts a complexity theory. Considering this, a conceptual framework of nD BIM-IKBMS was given. In terms of this, a mixed methods approach was adopted for this study in order to meet the objectives of the study. It is comprising of five stages of data collection: a documentation analysis was made to define the BIM related terminologies in a New Zealand context. Then a focus group interview was conducted to obtain New Zealand specific barriers coupled with specific suggestions. Based on the specific suggestions, a functional framework for the solution was developed and verified on its interoperability and flexibility. Under this framework, a process model was established, which was then adopted to develop a working prototype. Once the working prototype was deployed in a pilot case, a thermal model was adapted for simulating the heating costs of the HVAC system in three scenarios. This simulation delivered the evaluation of the effectiveness of our system. The findings of this study revealed that the current New Zealand BIM adoption was still early while the majority of existing BMSs here were not intelligent enough to maintain the energy efficiency. It was further verified that the solution is flexible and capable to be applied on the New Zealand’s situation in relation to educational facilities management. As a result, this study identified that BMS saved 1.52% heating costs in a New Zealand educational building whereas BIM-BMS integration attributed a further 0.68% (totally 2.20%). To emphasize the uniqueness of this study, a New Zealand context was considered to conduct this study. Whereas, a comparison to the results from other researchers all over the world was made to remain the generalization. Considering a wide-ranging variety of projects in different countries, building types, building systems, evaluation method, our findings are limited within the features of the pilot case. Other aspects were recommended in the future study for generalizing, complementing, and optimizing the outcomes of this study

    Ti–6Al–4V alloy prepared by laser powder bed fusion of a coarse powder

    No full text
    ABSTRACTA Ti–6Al–4V (wt%) alloy was prepared by laser powder bed fusion (LPBF) of a coarse powder with particle sizes in the range of 50–200 μm. The effect of volume energy density (VED) on cavities/pores, microstructure and mechanical properties of the LPBF-fabricated samples was investigated. The results showed that with the increase of VED, the content of cavities/pores decreased. When the VED was 100 J/mm3 and above, the content of cavities/pores decreased to below 0.3%, and the yield strength (YS), ultimate tensile strength (UTS) and elongation to fracture reached 1032, 1052 MPa and 7.0%, which are close to the tensile properties of Ti–6Al–4V alloy prepared by LPBF of a fine powder (particle sizes: 15–53 μm). The microstructure of the samples consisted of β-columnar crystals containing acicular α′ martensite. After vacuum annealing at 800°C and 900°C respectively, the microstructure of the fabricated samples changed to an α+β lamellar structure, with a substantial decrease in YS and UTS to 836 and 919 MPa, respectively, but a significant increase in elongation to fracture to 15.9%, resulting in very good overall tensile properties. This study shows that with a sufficient VED and proper heat treatment, a Ti–6Al–4V alloy with good metallurgical quality and excellent overall tensile properties can be fabricated by LPBF of a coarse powder

    Effects of behaviour change on HFMD transmission

    No full text
    ABSTRACTWe propose a hand, foot and mouth disease (HFMD) transmission model for children with behaviour change and imperfect quarantine. The symptomatic and quarantined states obey constant behaviour change while others follow variable behaviour change depending on the numbers of new and recent infections. The basic reproduction number [Formula: see text] of the model is defined and shown to be a threshold for disease persistence and eradication. Namely, the disease-free equilibrium is globally asymptotically stable if [Formula: see text] whereas the disease persists and there is a unique endemic equilibrium otherwise. By fitting the model to weekly HFMD data of Shanghai in 2019, the reproduction number is estimated at 2.41. Sensitivity analysis for [Formula: see text] shows that avoiding contagious contacts and implementing strict quarantine are essential to lower HFMD persistence. Numerical simulations suggest that strong behaviour change not only reduces the peak size and endemic level dramatically but also impairs the role of asymptomatic transmission

    Development of a BIM-based bridge maintenance system (BMS) for managing defect data

    No full text
    Abstract Bridges might experience many defects during use, such as pavement cracks and reinforcement corrosion, which easily produce an accumulated impact that threatens bridge safety. Thus, there is a need for the regular inspection and maintenance of bridges. This paper presents a bridge maintenance system (BMS) based on building information modelling (BIM), which is utilized in bridge defect information management using a digitalization method. A bridge defect three-dimensional BIM (BIM3D) library is established and combined with a bridge model to visualize bridge defect conditions. Based on bridge inspection data, bridge defect information is digitally classified and encoded according to the international framework for dictionaries (IFD) standard and used to establish a database. An evaluation of bridge technical conditions is performed, and the results are graded and displayed in different colours, reflecting the visualization function of BIM technology. Maintenance suggestions are provided according to the range of bridge technical condition scores, reflecting the informatization function of BIM technology. With the Xinjiang Cocodala Bridge in China as a case study, a bridge BIM3D model and inspection data are imported into the BMS to utilize the functions of ‘visualization of bridge defect conditions’, ‘evaluation of bridge technical conditions’ and ‘recommendations of bridge maintenance methods'

    Table_3_Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis.xlsx

    No full text
    Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.</p

    Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery

    No full text
    In this work, Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys are prepared and used as the anode of an Al-air battery (AAB). We use scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) and optical microscopy (OM) to analyze the microstructures of the alloys. The hydrogen evolution rate, electrochemical performance (including polarization curves), electrochemical impedance spectroscopy (EIS), and battery performance of the samples are examined in the 4 M NaOH electrolyte. The experimental data display that the average grain size is significantly refined after adding manganese into the Al-1Zn-0.1In-0.1Sn-0.5Mg alloy, with a decrease in grain size from over 100 &mu;m to about 10 &mu;m. The improved activity of the aluminum anode in the AAB can be attributed to the introduction of manganese. The Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn alloy possesses the optimal overall performance with a lower self-corrosion rate (0.128 mL&#8729;cm&minus;2&#8729;min&minus;1), the highest working potential (1.630 V) and energy density (2415 mWh&middot;g&minus;1), a higher capacity (1481 mAh&middot;g&minus;1) and anodic utilization (49.75%)

    Table_4_Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis.xlsx

    No full text
    Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.</p

    Data_Sheet_1_Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis.zip

    No full text
    Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.</p
    corecore